Exercise 1: Multiplication Table
Write a JavaScript program to print the multiplication table for a given number.
Example:
Input: 3
Output:
3 x 1 = 3
3 x 2 = 6
…
3 x 10 = 30
%%js
function multTable(number){ //define a function that uses a loop to create outputs from 0 to 10
for(let i = 0; i < 11; i++){
console.log(`${number} x ${i} = ${number * i}`); //Prints: n x i = product for every value (0-10)
}
} console.log(multTable(3)); //logs the output when input is 3.
<IPython.core.display.Javascript object>
Exercise 2: Nested Loops
Write a JavaScript program using nested loops to generate the following pattern:
Output:
0
00
000
0000
00000
%%js
for(let i = 1; i <=5; i++){
let zeroString = ""; //defines the string that will fill with zeros
for (let j = 1; j <= i; j++){
zeroString += "0"; //fills string wtih one zero, the prints it below. previous loop runs this 5 times.
}
console.log(zeroString);
}
<IPython.core.display.Javascript object>
Challenge Exercise: Prime Numbers
Write a JavaScript program to print all prime numbers between 1 and 50.
%%js
const primes = ['2', '3', '5', '7', '11', '13', '17', '19', '23', '29', '31', '37', '41', '43', '47']; //array with all primes
for (let prime of primes){
console.log(prime); //logs each entry individually
}
//if you guys don't like this approach, that's okay. Another answer below:
<IPython.core.display.Javascript object>
%%js
function primeCheck(n){
if(n <= 1) return false;
for (let i = 2; i <= Math.sqrt(n); i++){ //Divisors come in pairs. If say n is 36: if n is divisible by 4, it'll also be divisible by its pair. Therefore, the highest we need to go is the square root of n since higher numbers will just loop back to previous divisor pairs.
if (n % i === 0) return false; //abort if necessary
}
return true //if n passes all checks, say it works!
}
for (let i = 1; i <= 50; i++) {
if (primeCheck(i)) {//Check all primes from 1 to 50
console.log(i); //log results
}
}
<IPython.core.display.Javascript object>